Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Lancet Healthy Longev ; 3(10): e715-e721, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2250596

ABSTRACT

Both myeloid cells, which contribute to innate immunity, and lymphoid cells, which dominate adaptive immunity, partake in defending against SARS-CoV-2. In response to the virus, the otherwise slow haematopoietic production supply chain quickly unleashes its preconfigured myeloid element, which largely resists a bullwhip-like effect. By contrast, the lymphoid element risks a bullwhip-like effect when it produces T cells and B cells that are specifically designed to clear the virus. As T-cell production is telomere-length dependent and telomeres shorten with age, older adults are at higher risk of a T-cell shortfall when contracting SARS-CoV-2 than are younger adults. A poorly calibrated adaptive immune response, stemming from a bullwhip-like effect, compounded by a T-cell deficit, might thus contribute to the propensity of people with inherently short T-cell telomeres to develop severe COVID-19. The immune systems of these individuals might also generate an inadequate T-cell response to anti-SARS-CoV-2 vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Aged , Humans , SARS-CoV-2/genetics , T-Lymphocytes , Telomere/genetics
2.
EBioMedicine ; 78: 103978, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1768041

ABSTRACT

BACKGROUND: Severe COVID-19 T-cell lymphopenia is more common among older adults and entails poor prognosis. Offsetting the decline in T-cell count during COVID-19 demands fast and massive T-cell clonal expansion, which is telomere length (TL)-dependent. METHODS: We developed a model of TL-dependent T-cell clonal expansion capacity with age and virtually examined the relation of T-cell clonal expansion with COVID-19 mortality in the general population. FINDINGS: The model shows that an individual with average hematopoietic cell TL (HCTL) at age twenty years maintains maximal T-cell clonal expansion capacity until the 6th decade of life when this capacity rapidly declines by more than 90% over the next ten years. The collapse in the T-cell clonal expansion capacity coincides with the steep increase in COVID-19 mortality with age. INTERPRETATION: Short HCTL might increase vulnerability of many older adults, and some younger individuals with inherently short HCTL, to COVID-19 T-cell lymphopenia and severe disease. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
COVID-19 , Lymphopenia , Adult , Aged , Aging , Humans , T-Lymphocytes , Telomere/genetics , Young Adult
3.
EBioMedicine ; 70: 103513, 2021 08.
Article in English | MEDLINE | ID: covidwho-1330767
4.
Aging (Albany NY) ; 13(3): 3190-3201, 2021 02 07.
Article in English | MEDLINE | ID: covidwho-1068119

ABSTRACT

Males are at a higher risk of dying from COVID-19 than females. Older age and cardiovascular disease are also associated with COVID-19 mortality. To better understand how age and sex interact in contributing to COVID-19 mortality, we stratified the male-to-female (sex) ratios in mortality by age group. We then compared the age-stratified sex ratios with those of cardiovascular mortality and cancer mortality in the general population. Data were obtained from official government sources in the US and five European countries: Italy, Spain, France, Germany, and the Netherlands. The sex ratio of deaths from COVID-19 exceeded one throughout adult life, increasing up to a peak in midlife, and declining markedly in later life. This pattern was also observed for the sex ratio of deaths from cardiovascular disease, but not cancer, in the general populations of the US and European countries. Therefore, the sex ratios of deaths from COVID-19 and from cardiovascular disease share similar patterns across the adult life course. The underlying mechanisms are poorly understood and warrant further investigation.


Subject(s)
COVID-19 , Cardiovascular Diseases , Mortality , Risk Assessment , Adult , Age Factors , Aged , COVID-19/diagnosis , COVID-19/mortality , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/mortality , Europe/epidemiology , Female , Humans , Male , Middle Aged , Odds Ratio , Risk Assessment/methods , Risk Assessment/statistics & numerical data , SARS-CoV-2/isolation & purification , Sex Ratio
5.
J Gerontol A Biol Sci Med Sci ; 76(8): e97-e101, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1060193

ABSTRACT

Profound T-cell lymphopenia is the hallmark of severe coronavirus disease 2019 (COVID-19). T-cell proliferation is telomere length (TL) dependent and telomeres shorten with age. Older COVID-19 patients, we hypothesize, are, therefore, at a higher risk of having TL-dependent lymphopenia. We measured TL by the novel Telomere Shortest Length Assay (TeSLA), and by Southern blotting (SB) of the terminal restriction fragments in peripheral blood mononuclear cells of 17 COVID-19 and 21 non-COVID-19 patients, aged 87 ± 8 (mean ± SD) and 87 ± 9 years, respectively. TeSLA tallies and measures single telomeres, including short telomeres undetected by SB. Such telomeres are relevant to TL-mediated biological processes, including cell viability and senescence. TeSLA yields 2 key metrics: the proportions of telomeres with different lengths (expressed in %) and their mean (TeSLA mTL), (expressed in kb). Lymphocyte count (109/L) was 0.91 ± 0.42 in COVID-19 patients and 1.50 ± 0.50 in non-COVID-19 patients (p < .001). In COVID-19 patients, but not in non-COVID-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kb (p = .005) and positively correlated with TeSLA mTL (p = .03). Lymphocyte count was not significantly correlated with SB mTL in either COVID-19 or non-COVID-19 patients. We propose that compromised TL-dependent T-cell proliferative response, driven by short telomere in the TL distribution, contributes to COVID-19 lymphopenia among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons. Clinical Trials Registration Number: NCT04325646.


Subject(s)
COVID-19/physiopathology , Hospitalization , Lymphocyte Count , Lymphopenia , Telomere Shortening/physiology , Aged, 80 and over , Cellular Senescence , Humans , Lymphopenia/etiology , Lymphopenia/pathology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology
6.
medRxiv ; 2020 Oct 04.
Article in English | MEDLINE | ID: covidwho-835254

ABSTRACT

BACKGROUND: Lymphopenia due to a plummeting T-cell count is a major feature of severe COVID-19. T-cell proliferation is telomere length (TL)-dependent and TL shortens with age. Older persons are disproportionally affected by severe COVID-19, and we hypothesized that those with short TL have less capacity to mount an adequate T-cell proliferative response to SARS-CoV-2. This hypothesis predicts that among older patients with COVID-19, shorter telomeres of peripheral blood mononuclear cells (PBMCs) will be associated with a lower lymphocyte count. METHODS: Our sample comprised 17 COVID-19 and 21 non-COVID-19 patients, aged 87(8) (mean(SD)) and 87 (9) years, respectively. We measured TL by the Telomere Shortest Length Assay, a novel method that measures and tallies the short telomeres directly relevant to telomere-mediated biological processes. The primary analysis quantified TL as the proportion of telomeres shorter than 2 kilobases. For comparison, we also quantified TL by Southern blotting, which measures the mean length of telomeres. RESULTS: Lymphocyte count (109/L) was 0.91 (0.42) in COVID-19 patients and 1.50(0.50) in non-COVID-19 patients (P < 0.001). In COVID-19 patients, but not in non-COVID-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kilobases (P = 0.005) and positively correlated with the mean of telomeres measured by TeSLA (P = 0.03). Lymphocyte counts showed no statistically significant correlations with Southern blotting results in COVID-19 or non-COVID-19 patients. CONCLUSIONS: These results support the hypothesis that a compromised TL-dependent T-cell proliferative response contributes to lymphopenia and the resulting disproportionate severity of COVID-19 among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons.

7.
Non-conventional in English | WHO COVID | ID: covidwho-306321

ABSTRACT

The medical, public health, and scientific communities are grappling with monumental imperatives to contain COVID-19, develop effective vaccines, identify efficacious treatments for the infection and its complications, and find biomarkers that detect patients at risk of severe disease. The focus of this communication is on a potential biomarker, short telomere length (TL), that might serve to identify patients more likely to die from the SARS-CoV-2 infection, regardless of age. The common thread linking these patients is lymphopenia, which largely reflects a decline in the numbers of CD4/CD8 T cells but not B cells. These findings are consistent with data that lymphocyte TL dynamics impose a limit on T-cell proliferation. They suggest that T-cell lymphopoiesis might stall in individuals with short TL who are infected with SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL